BIM and ANN-based rapid prediction approach for natural daylighting inside library spaces

Author:

Ni Ting12,Wang Bo1,Jiang Jiaxin2,Wang Meng3,Lei Qing1,Deng Xinman4,Feng Cuiying25

Affiliation:

1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China

2. Business School, Sichuan University, Chengdu, Sichuan, P. R. China

3. School of Architecture, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China

4. College of Geophysics, Chengdu University of Technology, Chengdu, Sichuan, P. R. China

5. School of Management, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China

Abstract

The issue of how to fully utilize natural daylighting of public buildings is one of the greatest practical objectives for lighting savings. The rapid and accurate prediction of the daylighting coefficient at the early design stage can provide a quantitative basis for energy-saving optimization. However, it is not comprehensive to determine the design parameters according to experience. The key problem that is still facing designers is the interoperability between building modeling and energy simulation tools. In this paper, an integrated approach using a dataset created by building information modeling and artificial neural network technology is developed for the fast optimal daylight factor prediction of large public spaces at the early design stage. According to this approach, the value of daylight factors is calculated for different windowsill heights, window heights and widths by Autodesk® Revit and Ecotect Analysis to form a dataset. With this dataset, an artificial neural network model is established using the backpropagation algorithm to predict the relevant design parameters. With their large interior spaces, the reading areas of the aboveground five floors in Chengdu University of Technology Library are selected to carry out the daylight factor experiment and rapid prediction. A total of 495 groups of experimental data are randomly divided into training and testing sets. The root mean squared errors are below 0.1, which indicates a high regression model fitting. A total of 225,369 groups of prepared data are used in the prediction model to obtain the optimal windowsill height (1.0 m), window height (2.4 m) and window width (2.1 m) for five floors in the case of the maximum daylighting coefficient. Finally, a smartphone app is designed to facilitate daylight factor prediction without any experience in modeling and simulation tools, which is simple and available to realize prediction visualization and historical result analysis.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3