Measurement of China’s Building Energy Consumption from the Perspective of a Comprehensive Modified Life Cycle Assessment Statistics Method

Author:

Liu QiuruiORCID,Huang Juntian,Ni TingORCID,Chen Lin

Abstract

This paper proposes a new life cycle assessment (LCA) statistics method to calculate the energy consumption of Chinese buildings from the perspective of LCA under the sustainable supply chain system. We divide the life cycle of buildings into the materialization stage, the construction stage, and the operation stage. Based on the new LCA statistics method, we obtain the following findings. First, the growth of total building energy consumption has slowed down since 2014, and its share of the Chinese total energy consumption levels off, remaining at about 40%. In 2018, the stages of materialization, construction, and operation account for about 34.02%, 4.65%, and 61.33% in total building energy consumption, respectively. Second, the materialization and operation stages are the main sources of energy consumption in the whole supply chain. Energy consumption in the materialization stage has been declining year by year since 2014, due to the impact of energy-saving policy. Moreover, we find that energy consumption in the operation and construction stages has been increasing year by year. Finally, in the life cycle of Chinese buildings, energy consumption in the operation stage plays a dominant role. This paper puts forward some managerial suggestions to relevant departments and provides some measures to optimize energy consumption in the Chinese building industry.

Funder

Scientific Research Program of Hubei Provincial Department of Education

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3