A novel semi-supervised method for classification of power quality disturbance using generative adversarial network

Author:

Jian Xianzhong1,Wang Xutao2

Affiliation:

1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China

2. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

The existing methods for classification of power quality disturbance signals (PQDs) have the problems that the process of signal feature selection is tedious and imprecise, the accuracy of classification has no guiding significance for feature extraction, and lack of adequate labelled training data. To solve these problems, this paper proposes a new semi-supervised method for classification of PQDs based on generative adversarial network (GAN). Firstly, a GAN model is designed which we call it PQDGAN. After the unsupervised pre-training with unlabeled training data, the trained discriminator is extracted alone and conduct supervised training with a small amount of labelled training data. Finally, the discriminator became a classifier with high accuracy. This model can achieve the step of feature extraction and selection efficiently. In addition, only a small amount of labelled training data is used, which greatly reduces the dependence of classification model on labelled data. Experiments show that this method has high classification accuracy, less computations and strong robustness. It is a new semi-supervised method for classification of PQDs.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference30 articles.

1. Power system harmonics research: a survey;Singh;International Transactions on Electrical Energy Systems,2009

2. Baggini A. , Handbook of Power Quality, John Wiley & Sons (2008).

3. A critical review of detection and classification of power quality events;Mahela;Renewable and Sustainable Energy Reviews,2015

4. Empirical mode decomposition with Hilbert transform for classification of voltage sag causes using probabilistic neural network;Manjula;International Journal of Electrical Power & Energy Systems,2013

5. Time-frequency and time-scale domain analysis of voltage disturbances;Gu;IEEE Transactions on Power Delivery,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3