A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis

Author:

Samanta Indu Sekhar1,Panda Subhasis2ORCID,Rout Pravat Kumar3,Bajaj Mohit456ORCID,Piecha Marian7,Blazek Vojtech8ORCID,Prokop Lukas8ORCID

Affiliation:

1. Department of Computer Science Engineering, Siksha ‘O’ Anusandhan University, Odisha 751030, India

2. Department of Electrical Engineering, Siksha ‘O’ Anusandhan University, Odisha 751030, India

3. Department of Electrical and Electronics Engineering, Siksha ‘O’ Anusandhan University, Odisha 751030, India

4. Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India

5. Graphic Era Hill University, Dehradun 248002, India

6. Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan

7. Ministry of Industry and Trade, 11015 Prague, Czech Republic

8. ENET Centre, VSB—Technical University of Ostrava, 70800 Ostrava, Czech Republic

Abstract

Power quality (PQ) monitoring and detection has emerged as an essential requirement due to the proliferation of sensitive power electronic interfacing devices, electric vehicle charging stations, energy storage devices, and distributed generation energy sources in the recent smart grid and microgrid scenarios. Even though, to date, the traditional approaches play a vital role in providing a solution to the above issue, the limitations, such as the requirement of significant human effort and not being scalable for large-scale power systems, force us to think of alternative approaches. Looking at a better perspective, deep-learning (DL) has gained the main attraction for various researchers due to its inherent capability to classify the data by extracting dominating and prominent features. This manuscript attempts to provide a comprehensive review of PQ detection and classification based on DL approaches to explore its potential, efficiency, and consistency to produce results accurately. In addition, this state-of-the-art review offers an overview of the novel concepts and the step-by-step method for detecting and classifying PQ events. This review has been presented categorically with DL approaches, such as convolutional neural networks (CNNs), autoencoders, and recurrent neural networks (RNNs), to analyze PQ data. This paper also highlights the challenges and limitations of using DL for PQ analysis, and identifies potential areas for future research. This review concludes that DL algorithms have shown promising PQ detection and classification results, and could replace traditional methods.

Funder

Ministry of Education, Youth, and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3