Enhancing the Fault Ride-through Capability of a DFIG-WECS Using a High-Temperature Superconducting Coil

Author:

Mosaad Mohamed I.ORCID,Abu-Siada AhmedORCID,Ismaiel Mohamed M.,Albalawi Hani,Fahmy Ahmed

Abstract

With the increase in doubly fed induction generator-based wind energy conversion systems (DFIG-WECS) worldwide, improving the fault ride-through (FRT) capability of the entire system has been given much attention. Enhancement of the FRT capability of a DFIG-WECS is conventionally realized by employing a flexible AC transmission system device with a proper control system. This paper presents a non-conventional method for the improvement of the FRT of DFIG-WECS, using a high-temperature superconducting coil interfaced with the DC-link of the rotor and stator side converters through a DC-chopper. A fractional-order proportional-integral (FOPI) controller is utilized to regulate the DC-chopper duty cycle in order to properly manage the power flow between the DC-link and the coil. Two optimization techniques, Harmony Search and Grey Wolf Optimizer, are employed to determine the optimum size of the superconducting coil along with the optimum parameters of the FOPI controller. The effectiveness of the two proposed optimization techniques is highlighted through comparing their performance with the well-known particle swarm optimization technique.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Improving dynamic performance of wind energy conversion systems using fuzzy-based hysteresis current-controlled superconducting magnetic energy storage

2. Improvement of LVRT capability of variable speed wind turbine generators using SMES unit

3. Short-Term and Medium-Term Reliability Evaluation for Power Systems With High Penetration of Wind Power

4. Nordel Connection Code Wind Turbines https://www.wind-energy-the-facts.org/grid-codes-and-essential-requirements-for-wind-power-plants.html

5. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation;Abad,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3