A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances

Author:

Bagheri Azam,de Oliveira Roger AlvesORCID,Bollen Math H. J.ORCID,Gu Irene Y. H.ORCID

Abstract

This paper proposes a machine-learning-based framework for voltage quality analytics, where the space phasor model (SPM) of the three-phase voltages before, during, and after the event is applied as input data. The framework proceeds along with three main steps: (a) event extraction, (b) event characterization, and (c) additional information extraction. During the first step, it utilizes a Gaussian-based anomaly detection (GAD) technique to extract the event data from the recording. Principal component analysis (PCA) is adopted during the second step, where it is shown that the principal components correspond to the semi-minor and semi-major axis of the ellipse formed by the SPM. During the third step, these characteristics are interpreted to extract additional information about the underlying cause of the event. The performance of the framework was verified through experiments conducted on datasets containing synthetic and measured power quality events. The results show that the combination of semi-major axis, semi-minor axis, and direction of the major axis forms a sufficient base to characterize, classify, and eventually extract additional information from recorded event data.

Funder

Swedish Energy Agency

Energiforsk and the Swedish Transport Administration

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Understanding Power Quality Problems: Voltage Sags and Interruptions;Bollen,2000

2. Testing and Measurement Techniques-Power Quality Measurement Methods,2009

3. https://ieeexplore.ieee.org/document/6842577

4. Improved characterization of multi-stage voltage dips based on the space phasor model

5. A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3