Abstract
This paper proposes a machine-learning-based framework for voltage quality analytics, where the space phasor model (SPM) of the three-phase voltages before, during, and after the event is applied as input data. The framework proceeds along with three main steps: (a) event extraction, (b) event characterization, and (c) additional information extraction. During the first step, it utilizes a Gaussian-based anomaly detection (GAD) technique to extract the event data from the recording. Principal component analysis (PCA) is adopted during the second step, where it is shown that the principal components correspond to the semi-minor and semi-major axis of the ellipse formed by the SPM. During the third step, these characteristics are interpreted to extract additional information about the underlying cause of the event. The performance of the framework was verified through experiments conducted on datasets containing synthetic and measured power quality events. The results show that the combination of semi-major axis, semi-minor axis, and direction of the major axis forms a sufficient base to characterize, classify, and eventually extract additional information from recorded event data.
Funder
Swedish Energy Agency
Energiforsk and the Swedish Transport Administration
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference47 articles.
1. Understanding Power Quality Problems: Voltage Sags and Interruptions;Bollen,2000
2. Testing and Measurement Techniques-Power Quality Measurement Methods,2009
3. https://ieeexplore.ieee.org/document/6842577
4. Improved characterization of multi-stage voltage dips based on the space phasor model
5. A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献