Evaluation of bridge structure damage based on deep learning identification model

Author:

Yan Xiangqin,Zhai Lei,Feng Zhe

Abstract

Safety monitoring is an important part of bridge engineering construction and operation. At present, there is room for promoting the health monitoring and evaluation of small and medium-sized concrete bridges. In view of this, the study first models the spatial model and physical parameters of the bridge, and then builds the data of vehicle load and vehicle type. To reduce the complexity of data mapping, wavelet packet decomposition is used to analyze the data structure. And the physical field effect analysis is abandoned to directly mine the data relationship at both ends by using deep neural network. The data decomposition results show that the method can discard the temperature-induced effect. And the local decomposition results of the data meet the input of the neural network. The data measured by the sensor is added to the depth learning model for fitting. The overall and local fitting rates are more than 92%. The loss function converges quickly, and there is no gradient explosion. The model predicts the bridge structural damage caused by vehicle stress of four load categories, and the results show that the average fitting rate is 89.72%. Therefore, the identification path of the proposed deep learning model has positive significance for the evaluation of bridge structural damage. The main contribution of the study is to propose a deep learning-based method for bridge structural damage assessment. By modeling the spatial model and physical parameters of the bridge and combining data from vehicle load and vehicle type, the data structure was analyzed using the wavelet packet decomposition method to eliminate temperature-induced effects and data from sensor measurements were added to the deep learning model for fitting. This finding has positive implications for bridge structural damage assessment and can provide effective pathways and methods to monitor and evaluate the health status of small and medium-sized concrete bridges. This has important practical application value for the construction and operation of bridge engineering.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3