Deep learning-based indirect bridge damage identification system

Author:

Hajializadeh Donya1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK

Abstract

With the growing number of well-aged bridges and the urgency in developing reliable, (pseudo-) real-time monitoring of structural safety and integrity, there is a worldwide and widespread campaign toward transforming structural health monitoring practice. Among these attempts, the application of data-driven approaches in developing damage identification techniques has received particular attention in recent years. Given the growing volume of structural health monitoring data, the power of data-driven approaches has been further exploited. These efforts have been predominantly focused on building and training algorithms using direct measurements from bridges. Although recent years have seen transformative technologies in producing cheap and wireless sensors, network-wide bridge instrumentation is logistically difficult and expensive. This has led to a new group of structural health monitoring systems entitled indirect or drive-by approaches. In drive-by systems, measurements from an instrumented vehicle are used to extract structural damage signatures. In other words, in these systems, the instrumented vehicle acts as both actuator and receiver while passing over a bridge. The main challenge in deploying drive-by approaches for damage identification purposes is that the signals collected on drive-by vehicles also embody signatures from the vehicle, road/rail profile and are easily contaminated by environmental and operational conditions. Furthermore, the majority of current drive-by damage identification systems rely on prior knowledge of vehicle or bridge dynamic characteristics which has led to limited application of the concept in practice so far. To address these challenges, this study employs a powerful class of deep learning algorithm to develop a damage identification system using measurements on an instrumented travelling train. The proposed algorithm is capable of automatically extracting damage signatures from train-borne measurements only. To demonstrate the algorithm’s capability, the method is applied to measurements collected on a model instrumented train travelling on a simply supported model steel bridge. For this purpose, a deep convolutional neural network is built, optimised, trained and tested to detect damage using acceleration signals collected on the instrumented train only. The hyperparameters of the algorithm are optimised using the Bayesian optimisation technique. The accuracy of the algorithm is experimentally tested for four positive damage scenarios (combination of two different locations and intensity) and three different travelling speeds. This is the first demonstration of the data-driven drive-by damage identification system under scaled operational environment conditions. The performance of the proposed method is discussed under different travelling speeds and different damage states. The result shows that the proposed method can accurately and automatically detect and classify damage under varying speed, rail irregularities and operational noise using train-borne measurements only and offers a great promise in transforming the future of bridge damage identification system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3