Smoking behavior recognition based on a two-level attention fine-grained model and EfficientDet network

Author:

Li Fanshu1,Yao Dengfeng12,Jiang Minghu2,Kang Xinchen1

Affiliation:

1. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China

2. Lab of Computational Linguistics, School of Humanities, Tsinghua University, Beijing, China

Abstract

A new smoking behavior recognition algorithm based on a weak supervision fine-grained structure and the EficientDet network is proposed in this study to solve the poor recognition effect and lack of data samples of smoking behavior in complex situations. The proposed algorithm uses the framework of a fine-grained two-level attention model with weak supervision. First, the feature edge of the image block is detected by a structured method, and the edge is screened by non-maximum suppression to form a candidate region block. Smoking behavior can then be recognized effectively by combining the results of the object-level filter for specific objects and the local-level filter for locating discriminant parts. Second, the object-level filter uses an improved EfficientDet network to classify prospective objects and candidate regions with strong features. The present smoking behavior recognition algorithm and coarse- and fine-grained algorithms are compared to verify the effectiveness of the algorithm. Experimental results show that the accuracy of the proposed algorithm is 93.10%, which is higher than that of the optimal smoking behavior detection algorithm by 1.7%, and the error detection rate is 3.6%.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3