Detection of Smoking in Indoor Environment Using Machine Learning

Author:

Cho Jae HyukORCID

Abstract

Revealed by the effect of indoor pollutants on the human body, indoor air quality management is increasing. In particular, indoor smoking is one of the common sources of indoor air pollution, and its harmfulness has been well studied. Accordingly, the regulation of indoor smoking is emerging all over the world. Technical approaches are also being carried out to regulate indoor smoking, but research is focused on detection hardware. This study includes analytical and machine learning approach of cigarette detection by detecting typical gases (total volatile organic compounds, CO2 etc.) being collected from IoT sensors. In detail, data set for machine learning was built using IoT sensors, including training data set securely collected from the rotary smoking machine and test data set gained from actual indoor environment with spontaneous smokers. The prediction accuracy was evaluated with accuracy, precision, and recall. As a result, the non-linear support vector machine (SVM) model showed the best performance with 93% in accuracy and 88% in the F1 score. The supervised learning k-nearest neighbors (KNN) and multilayer perceptron (MLP) models also showed relatively fine results, but shows effectivity simplifying prediction with binary classification to improve accuracy and speed.

Funder

KHIDI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Indoor air quality and health

2. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy

3. Indoor Air Quality and Risk Management;Yang,2008

4. Household Air Pollution and Healthhttps://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health

5. The Hidden Hazard of Third Hand Smoke. National Environmental Health Associationhttps://www.neha.org/eh-topics/air-quality-0/third-hand-smoke

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3