Application of the YOLOv6 Combining CBAM and CIoU in Forest Fire and Smoke Detection

Author:

Wang Aoran1,Liang Guanghao1,Wang Xuan1ORCID,Song Yongchao1ORCID

Affiliation:

1. School of Computer and Control Engineering, Yantai University, Yantai 264005, China

Abstract

Forest fires are a vulnerable and devastating disaster that pose a major threat to human property and life. Smoke is easier to detect than flames due to the vastness of the wildland scene and the obscuring vegetation. However, the shape of wind-blown smoke is constantly changing, and the color of smoke varies greatly from one combustion chamber to another. Therefore, the widely used sensor-based smoke and fire detection systems have the disadvantages of untimely detection and a high false detection rate in the middle of an open environment. Deep learning-based smoke and fire object detection can recognize objects in the form of video streams and images in milliseconds. To this end, this paper innovatively employs CBAM based on YOLOv6 to increase the extraction of smoke and fire features. In addition, the CIoU loss function was used to ensure that training time is reduced while extracting the feature effects. Automatic mixed-accuracy training is used to train the model. The proposed model has been validated on a self-built dataset containing multiple scenes. The experiments demonstrated that our model has a high response speed and accuracy in real-field smoke and fire detection, which provides intelligent support for forest fire safety work in social life.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3