Affiliation:
1. Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
Abstract
Abstract
Background: The widespread threat of severe acute respiratory syndrome (SARS) to human health has made urgent the development of fast and accurate analytical methods for its early diagnosis and a safe and efficient antiviral vaccine for preventive use. For this purpose, we investigated the antigenicity of different regions of the SARS coronavirus (SARS-CoV) nucleocapsid (N) protein.
Methods: The cDNA for full-length N protein and its various regions from the SARS-CoV was cloned and expressed in Escherichia coli. After purification, all of the protein fragments were printed on glass slides to fabricate a protein microarray and then probed with the sera from SARS patients to determine the reactivity of these protein fragments.
Results: The full-length protein and two other fragments reacted with all 52 sera tested. Four important regions with possible epitopes were identified and named as EP1 (amino acids 51–71), EP2 (134–208), EP3 (249–273), and EP4 (349–422), respectively. EP2 and EP4 possessed linear epitopes, whereas EP1 and EP2 were able to form conformational epitopes that could react with most (>80%) of the tested sera. EP3 and EP4 also formed conformational epitopes, and antibodies against these epitopes existed in all 52 of the sera tested.
Conclusion: The N protein is a highly immunogenic protein of the SARS-CoV. Conformational epitopes are important for this protein, and antigenicity of the COOH terminus is higher than that of the NH2 terminus. The N protein is a potential diagnostic antigen and vaccine candidate for SARS-CoV.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献