Investigating first-year undergraduate chemistry students’ reasoning with reaction coordinate diagrams when choosing among particulate-level reaction mechanisms

Author:

Atkinson Molly B.1234ORCID,Croisant Michael5674,Bretz Stacey Lowery5674ORCID

Affiliation:

1. University of North Texas

2. Department of Chemistry

3. Denton

4. USA

5. Miami University

6. Department of Chemistry & Biochemistry

7. Oxford

Abstract

Reaction coordinate diagrams (RCDs) are an important tool used to visualize the energetics of a chemical reaction. RCDs provide information about the kinetics of the reaction, the mechanism by which the reaction occurs, and the relative thermodynamic stability of the molecules in a reaction. Previous research studies have characterized student thinking about chemical kinetics, including their confusion in distinguishing between kinetics and thermodynamics. Semi-structured interviews were conducted with 44 students enrolled in a second-semester, first-year undergraduate chemistry course to elicit students’ ideas about surface features of RCDs and to examine how students connect those surface features to features of particulate-level reaction mechanisms. Students were provided both a gas-phase reaction and its accompanying RCD, and then they were asked to choose the particulate-level reaction mechanism that best corresponded to both the reaction and the RCD from among several possible particulate-level reaction mechanisms. Students were asked to explain their reasoning throughout the interview. Findings include students who chose the correct mechanism with appropriate reasoning, as well as students who chose the correct mechanism yet still expressed inaccurate ideas related to the surface features of RCDs and the concepts encoded within them. Students struggled to explain and reason with surface features such as peaks, valleys, and peak height. Moreover, students frequently found it difficult to identify meaningful connections between these surface features, the stoichiometry of the reaction, and the steps in a reaction mechanism. In addition, many students failed to mention important features of RCDs when describing their reasoning about the connections between particulate-level reaction mechanisms and RCDs. The implications for incorporating these research findings into teaching practices in first-year undergraduate chemistry contexts are discussed.

Funder

National Science Foundation

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3