Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015

Author:

Brown Steven S.12345ORCID,An Hyunjin6789,Lee Meehye6789,Park Jeong-Hoo1011129,Lee Sang-Deok101112913,Fibiger Dorothy L.123414,McDuffie Erin E.12345,Dubé William P.123414,Wagner Nicholas L.123414,Min Kyung-Eun1516179

Affiliation:

1. Chemical Sciences Division

2. NOAA Earth System Research Laboratory

3. Boulder

4. USA

5. Department of Chemistry and Biochemistry

6. Department of Earth and Environmental Sciences

7. Korea University

8. Seoul

9. South Korea

10. Climate and Air Quality Research Department

11. National Institute of Environmental Research

12. Incheon

13. Department of Forest Environment Protection

14. Cooperative Institute for Research in Environmental Sciences

15. School of Earth Science and Environmental Engineering

16. Gwangju Institute of Science and Technology

17. Gwangju

Abstract

Cavity enhanced spectroscopy, CES, is a high sensitivity direct absorption method that has seen increasing utility in the last decade, a period also marked by increasing requirements for understanding human impacts on atmospheric composition. This paper describes the current NOAA six channel cavity ring-down spectrometer (CRDS, the most common form of CES) for measurement of nitrogen oxides and O3. It further describes the results from measurements from a tower 300 m above the urban area of Seoul in late spring of 2015. The campaign demonstrates the performance of the CRDS instrument and provides new data on both photochemistry and nighttime chemistry in a major Asian megacity. The instrument provided accurate, high time resolution data for N2O5, NO, NO2, NOyand O3, but suffered from large wall loss in the sampling of NO3, illustrating the requirement for calibration of the NO3inlet transmission. Both the photochemistry and nighttime chemistry of nitrogen oxides and O3were rapid in this megacity. Sustained average rates of O3buildup of 10 ppbv h−1during recurring morning and early afternoon sea breezes led to a 50 ppbv average daily O3rise. Nitrate radical production rates,P(NO3), averaged 3–4 ppbv h−1in late afternoon and early evening, much greater than contemporary data from Los Angeles, a comparable U. S. megacity. TheseP(NO3) were much smaller than historical data from Los Angeles, however. Nighttime data at 300 m above ground showed considerable variability in high time resolution nitrogen oxide and O3, likely resulting from sampling within gradients in the nighttime boundary layer structure. Apparent nighttime biogenic VOC oxidation rates of several ppbv h−1were also likely influenced by vertical gradients. Finally, daytime N2O5mixing ratios of 3–35 pptv were associated with rapid daytimeP(NO3) and agreed well with a photochemical steady state calculation.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3