What students write about when students write about mechanisms: analysis of features present in students’ written descriptions of an organic reaction mechanism

Author:

Watts Field M.1234ORCID,Schmidt-McCormack Jennifer A.5674ORCID,Wilhelm Catherine A.1234,Karlin Ashley89104,Sattar Atia89104,Thompson Barry C.119104ORCID,Gere Anne Ruggles12234,Shultz Ginger V.1234ORCID

Affiliation:

1. Department of Chemistry

2. University of Michigan

3. Ann Arbor

4. USA

5. Chemistry Department

6. St. Ambrose University

7. Davenport

8. Writing Program

9. University of Southern California

10. Los Angeles

11. Department of Chemistry and Loker Hydrocarbon Research Institute

12. Department of English Language and Literature and School of Education

Abstract

Learning to reason through organic reaction mechanisms is challenging for students because of the volume of reactions covered in introductory organic chemistry and the complexity of conceptual knowledge and reasoning skills required to develop meaningful understanding. However, understanding reaction mechanisms is valuable for students because they are useful for predicting and explaining reaction outcomes. To identify the features students find pertinent when explaining reaction mechanisms, we have collected students’ written descriptions of an acid-catalysed amide hydrolysis reaction. Students’ writing was produced during the implementation of Writing-to-Learn assignments in a second semester organic chemistry laboratory course. We analysed students’ written responses using an analytical framework for recognizing students’ mechanistic reasoning, originally developed with attention to the philosophy of science literature. The analysis sought to identify the presence of specific features necessary for mechanistic reasoning belonging to four broad categories: (1) describing an overview of the reaction, (2) detailing the setup conditions required for the mechanism to occur, (3) describing the changes that take place over the course of the mechanism, and (4) identifying the properties of reacting species. This work provides a qualitative description of the variety of ways in which students included these features necessary for mechanistic reasoning in their writing. We additionally analysed instances of co-occurrence for these features in students’ writing to make inferences about students’ mechanistic reasoning, defined here as the use of chemical properties to justify how electrons, atoms, and molecules are reorganized over the course of a reaction. Feature co-occurrences were quantified using the lift metric to measure the degree of their mutual dependence. The quantitative lift results provide empirical support for the hierarchical nature of students’ mechanistic descriptions and indicate the variation in students’ descriptions of mechanistic change in conjunction with appeals to chemistry concepts. This research applies a framework for identifying the features present in students’ written mechanistic descriptions, and illustrates the use of an association metric to make inferences about students’ mechanistic reasoning. The findings reveal the capacity of implementing and analysing writing to make inferences about students’ mechanistic reasoning.

Funder

W. M. Keck Foundation

University of Michigan

National Science Foundation

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3