Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities
Author:
Affiliation:
1. Key Laboratory for Green Chemical Technology of Ministry of Education
2. School of Chemical Engineering and Technology
3. Tianjin University
4. Collaborative Innovation Center of Chemical Science and Engineering
5. Tianjin 300072
Abstract
This paper describes the design and synthesis of porous single-crystalline AuPt@Pt bimetallic nanocrystals with excellent mass activities for the oxygen reduction reaction and formic acid oxidation.
Funder
National Natural Science Foundation of China
Program for New Century Excellent Talents in University
China Postdoctoral Science Foundation
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2016/SC/C6SC00083E
Reference34 articles.
1. Materials for fuel-cell technologies
2. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications
3. Electrocatalyst approaches and challenges for automotive fuel cells
4. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage
5. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications
Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading;Nature Communications;2024-08-08
2. Ir‐Doped CuPd Single‐Crystalline Mesoporous Nanotetrahedrons for Ethylene Glycol Oxidation Electrocatalysis: Enhanced Selective Cleavage of C−C Bond;Angewandte Chemie International Edition;2024-02-28
3. Ir‐Doped CuPd Single‐Crystalline Mesoporous Nanotetrahedrons for Ethylene Glycol Oxidation Electrocatalysis: Enhanced Selective Cleavage of C−C Bond;Angewandte Chemie;2024-02-28
4. Intermediate Confinement for Selective Ammonia Electrosynthesis from Nitrate on Robust Mesoporous Metal Catalysts;Advanced Energy Materials;2023-09-08
5. The enhancement in the performance of ultra-small core–shell Au@AuPt nanoparticles toward HER and ORR by surface engineering;Nanoscale;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3