Ir‐Doped CuPd Single‐Crystalline Mesoporous Nanotetrahedrons for Ethylene Glycol Oxidation Electrocatalysis: Enhanced Selective Cleavage of C−C Bond

Author:

Lv Hao12,Mao Yumeng3,Yao Huiqin4,Ma Huazhong5,Han Chenyu1,Yang Yao‐Yue5,Qiao Zhen‐An3ORCID,Liu Ben1

Affiliation:

1. Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 610064 Chengdu China

2. School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 200240 Shanghai China

3. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University 130012 Changchun China

4. School of Basic Medical Sciences Ningxia Medical University 750004 Yinchuan China

5. Key Laboratory of General Chemistry of State Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University 610041 Chengdu China

Abstract

AbstractThe development of highly efficient electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells is of decisive importance to hold higher energy efficiency. Despite some achievements, their progress, especially electrocatalytic selectivity to complete oxidated C1 products, is remarkably slower than expected. In this work, we developed a facile aqueous synthesis of Ir‐doped CuPd single‐crystalline mesoporous nanotetrahedrons (Ir‐CuPd SMTs) as high‐performance electrocatalyst for promoting oxidation cleavage of C−C bond in alkaline EG oxidation reaction (EGOR) electrocatalysis. The synthesis relied on precise reduction/co‐nucleation and epitaxial growth of Ir, Cu and Pd precursors with cetyltrimethylammonium chloride as the mesopore‐forming surfactant and extra Br as the facet‐selective agent under ambient conditions. The products featured concave nanotetrahedron morphology enclosed by well‐defined (111) facets, single‐crystalline and mesoporous structure radiated from the center, and uniform elemental composition without any phase separation. Ir‐CuPd SMTs disclosed remarkably enhanced electrocatalytic activity and excellent stability as well as superior selectivity of C1 products for alkaline EGOR electrocatalysis. Detailed mechanism studies demonstrated that performance improvement came from structural and compositional synergies, which kinetically accelerated transports of electrons/reactants within active sites of penetrated mesopores and facilitated oxidation cleavage of high‐energy‐barrier C−C bond of EG for desired C1 products. More interestingly, Ir‐CuPd SMTs performed well in coupled electrocatalysis of anode EGOR and cathode nitrate reduction, highlighting its high potential as bifunctional electrocatalyst in various applications.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3