Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading

Author:

Wang Yanzhi,He Hangjuan,Lv Hao,Jia Fengrui,Liu BenORCID

Abstract

AbstractMesoporous single crystals have received more attention than ever in catalysis-related applications due to their unique structural functions. Despite great efforts, their progress in engineering crystallinity and composition has been remarkably slower than expected. In this manuscript, a template-free strategy is developed to prepare two-dimensional high-entropy oxide (HEO) nanoplates with single-crystallinity and penetrated mesoporosity, which further ensures precise control over high-entropy compositions and crystalline phases. Single-crystalline mesoporous HEOs (SC-MHEOs) disclose high electrocatalytic performance in 5-hydroxymethylfurfural oxidation reaction (HMFOR) for efficient biomass upgrading, with remarkable HMF conversion of 99.3% and superior 2,5-furandicarboxylic acid (FDCA) selectivity of 97.7%. Moreover, with nitrate reduction as coupling cathode reaction, SC-MHEO realizes concurrent electrosynthesis of value-added FDCA and ammonia in the two-electrode cell. Our study provides a powerful paradigm for producing a library of novel mesoporous single crystals for important catalysis-related applications, especially in the two-electrode cell.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3