VR in chemistry, a review of scientific research on advanced atomic/molecular visualization

Author:

Fombona-Pascual Alba1ORCID,Fombona Javier2ORCID,Vázquez-Cano Esteban3ORCID

Affiliation:

1. Department of Organic and Inorganic Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain

2. Department of Educational Sciences, University of Oviedo, 33005 Oviedo, Spain

3. Department of Didactics, UNED University, 50487 Madrid, Spain

Abstract

Atomic/molecular visualization for human sight is usually generated by a software that reproduces a 3D reality on a 2D screen. Although Virtual Reality (VR) software was originally developed for the gaming industry, now it is used in academia for chemistry teaching. This work reviews the scientific literature on 3D visualization in stereoscopic vision, the VR. VR has the capability to simulate reality since we do not observe these real particles, but it reproduces their shapes and movements digitally. The aim of this study is to present the applications of this technology and to show the function of VR in the field of chemistry and the potential for implementation of VR in research and educational settings. The review is based on 219 articles and meeting papers, between 2018 and 2020, obtained from Web of Science (WoS). A series of registers from the WoS repository was analyzed and assigned to three groups, an analysis of 2D support software, analysis of research on Virtual Reality (VR), and research on Virtual Laboratories (VL). The research on advanced atomic/molecular simulation reveals discrepancies regarding the VR effectiveness of Chemistry teaching. Novel Virtual Reality Laboratory (VRL) methodologies are emerging that have a high impact on educational and research scenarios. VL and VRL entail several advantages and drawbacks, such as the implementation of new methodologies, the increase in the students’ motivation, the growth of new spaces for collaborative online interaction, and the interaction with physical structure of any impossible, dangerous, or not feasible elements. Finally, the article compares the main features and the learning outcomes of the VRL and the traditional laboratory.

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3