Semiempirical modeling of electrochemical charge transfer

Author:

Gieseking Rebecca L.1234,Ratner Mark A.1234,Schatz George C.1234ORCID

Affiliation:

1. Department of Chemistry

2. Northwestern University

3. Evanston

4. USA

Abstract

Nanoelectrochemical experiments using detection based on tip enhanced Raman spectroscopy (TERS) show a broad distribution of single-molecule formal potentials E°′ for large π-conjugated molecules; theoretical studies are needed to understand the origins of this distribution. In this paper, we present a theoretical approach to determine E°′ for electrochemical reactions involving a single molecule interacting with an electrode represented as a metal nanocluster and apply this method to the Ag20–pyridine system. The theory is based on the semiempirical INDO electronic structure approach, together with the COSMO solvation model and an approach for tuning the Fermi energy, in which the silver atomic orbital energies are varied until the ground singlet state of Ag20–pyridine matches the lowest triplet energy, corresponding to electron transfer from the metal cluster to pyridine. Based on this theory, we find that the variation of E°′ with the structure of the Ag20–pyridine system is only weakly correlated with changes in either the ground-state interaction energy or the charge-transfer excited-state energies at zero applied potential, which shows the importance of calculations that include an applied potential in determining the variation of formal potential with geometry. Factors which determine E°′ include wavefunction overlap for geometries when pyridine is close to the surface, and electrostatics when the molecule-cluster separation is large.

Funder

Air Force Office of Scientific Research

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3