Multiscale modeling and simulation of surface‐enhanced spectroscopy and plasmonic photocatalysis

Author:

Liang WanZhen1ORCID,Huang Jiaquan1,Sun Jin2,Zhang Pengcheng3,Li Akang1

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China

2. Energy Materials & Devices Key Laboratory of Anhui Province, School of Physics and Photoelectric Engineering Anhui University Hefei People's Republic of China

3. College of Chemistry and Chemical Engineering Zhoukou Normal University Zhoukou People's Republic of China

Abstract

AbstractPlasmonic metal nanoparticles (PMNPs) are capable of localized surface plasmon resonance (LSPR) and have become an important component in many experimental settings, such as the surface‐enhanced spectroscopy and plasmonic photocatalysts, in which PMNPs are used to regulate the nearby molecular photophysical and photochemical behaviors by means of the complex interplay between the plasmon and molecular quantum transitions. Building computational models of these coupled plasmon‐molecule systems can help us better understand the bound molecular properties and reactivity, and make better decisions to design and control such systems. Ab initio modeling the nanosystem remains highly challenging. Many hybrid quantum‐classical (or ‐quantum) computing models have thus been developed to model the coupled systems, in which the molecular system of interest is designated as the quantum mechanical (QM) sub‐region and treated by the excited‐state electronic structure approaches such as the time‐dependent density functional theory (TDDFT), while the electromagnetic response of PMNPs is usually described using either a computational/classical electrodynamic (CED) model, polarizable continuum model(PCM), a polarizable molecular mechanics (MM) force field, or a collective of optical oscillators in QED model, leading to many hybrid approaches, such as QM/CED, QM/PCM, QM/MM or ab initio QED. In this review, we summarize recent advances in the development of these hybrid models as well as their advantages and limitations, with a specific emphasis on the TDDFT‐based approaches. Some numerical simulations on the plasmon‐enhanced absorption and Raman spectroscopy, plasmon‐driven water splitting reaction and interfacial electronic injection dynamics in dye‐sensitized solar cell are demonstrated.This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Theoretical and Physical Chemistry > Spectroscopy Software > Quantum Chemistry Electronic Structure Theory > Combined QM/MM Methods

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Computational Mathematics,Physical and Theoretical Chemistry,Computer Science Applications,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3