Accelerated constant-voltage quantum mechanical/molecular mechanical method for molecular systems at electrochemical interfaces

Author:

Takahashi Ken1ORCID,Nakano Hiroshi2ORCID,Sato Hirofumi13ORCID

Affiliation:

1. Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan

2. CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan

3. Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan

Abstract

The structure and electronic properties of a molecule at an electrochemical interface are changed by interactions with the electrode surface and the electrolyte solution, which can be significantly modulated by an applied voltage. We present an efficient self-consistent quantum mechanics/molecular mechanics (QM/MM) approach to study a physisorbed molecule at a metal electrode–electrolyte interface under the constant-voltage condition. The approach employs a classical polarizable double electrode model, which enables us to study the QM/MM system in the constant-voltage ensemble. A mean-field embedding approximation is further introduced in order to overcome the difficulties associated with statistical sampling of the electrolyte configurations. The results of applying the method to a test system indicate that the adsorbed molecule is no less or slightly more polarized at the interface than in the bulk electrolyte solution. The geometry of the horizontally adsorbed molecule is modulated by their electrostatic interactions with the polarizable electrode surfaces and also the interactions with cations attracted toward the interface when the adsorbate is reduced. We also demonstrate that the approach can be used to quantitatively evaluate the reorganization energy of a one electron reduction reaction of a molecule in an electrochemical cell.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3