Multilayer Perceptron approach to Condition-Based Maintenance of Marine CODLAG Propulsion System Components

Author:

Lorencin Ivan1,Anđelić Nikola1,Mrzljak Vedran1,Car Zlatan1

Affiliation:

1. Sveučilište u Rijeci, Tehnički fakultet, Rijeka, Hrvatska

Abstract

In this paper multilayer perceptron (MLP) approach to condition-based maintenance of combined diesel-electric and gas (CODLAG) marine propulsion system is presented. By using data available in UCI, online machine learning repository, MLPs for prediction of gas turbine (GT) and GT compressor decay state coefficients are designed. Aforementioned MLPs are trained and tested by using 11 934 samples, of which 9 548 samples are used for training and 2 386 samples are used testing. In the case of GT decay state coefficient prediction, the lowest mean relative error of 0.622 % is achieved if MLP with one hidden layer of 50 artificial neurons (AN) designed with Tanh activation function is utilized. This configuration achieves the best results if it is trained by using L-BFGS solver. In the case of GT compressor decay state coefficient, the best results are achieved if MLP is designed with four hidden layers of 100, 50, 50 and 20 ANs, respectively. This configuration is designed by using Logistic sigmoid activation function. The lowest mean relative error of 1.094 % is achieved if MLP is trained by using L-BFGS solver.

Publisher

University of Rijeka, Faculty of Maritime Studies

Subject

Engineering (miscellaneous),Social Sciences (miscellaneous),Geography, Planning and Development,Ocean Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of maintenance strategies for ship machinery systems;Journal of Marine Engineering & Technology;2023-04-12

2. Deep Learning Stranded Neural Network Model for the Detection of Sensory Triggered Events;Algorithms;2023-04-10

3. A literature review and future research agenda on fault detection and diagnosis studies in marine machinery systems;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-01-31

4. Thermodynamic Analysis of Steam Cooling Process in Marine Power Plant by Using Desuperheater;Journal of Maritime & Transportation Science;2022-08

5. A novel methodology to develop risk-based maintenance strategies for fishing vessels;Ocean Engineering;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3