Deep Learning Stranded Neural Network Model for the Detection of Sensory Triggered Events

Author:

Kontogiannis Sotirios1ORCID,Gkamas Theodosios1ORCID,Pikridas Christos2ORCID

Affiliation:

1. Laboratory Team of Distributed Microcomputer Systems, Department of Mathematics, University of Ioannina, University Campus, 45110 Ioannina, Greece

2. School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Maintenance processes are of high importance for industrial plants. They have to be performed regularly and uninterruptedly. To assist maintenance personnel, industrial sensors monitored by distributed control systems observe and collect several machinery parameters in the cloud. Then, machine learning algorithms try to match patterns and classify abnormal behaviors. This paper presents a new deep learning model called stranded-NN. This model uses a set of NN models of variable layer depths depending on the input. This way, the proposed model can classify different types of emergencies occurring in different time intervals; real-time, close-to-real-time, or periodic. The proposed stranded-NN model has been compared against existing fixed-depth MLPs and LSTM networks used by the industry. Experimentation has shown that the stranded-NN model can outperform fixed depth MLPs 15–21% more in terms of accuracy for real-time events and at least 10–14% more for close-to-real-time events. Regarding LSTMs of the same memory depth as the NN strand input, the stranded NN presents similar results in terms of accuracy for a specific number of strands. Nevertheless, the stranded-NN model’s ability to maintain multiple trained strands makes it a superior and more flexible classification and prediction solution than its LSTM counterpart, as well as being faster at training and classification.

Funder

European Union and Greek national funds

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3