Performance Evaluation of Distributed Database Strategies Using Docker as a Service for Industrial IoT Data: Application to Industry 4.0

Author:

Gkamas Theodosios,Karaiskos VasileiosORCID,Kontogiannis SotiriosORCID

Abstract

Databases are an integral part of almost every application nowadays. For example, applications using Internet of Things (IoT) sensory data, such as in Industry 4.0, are a classic example of an organized storage system. Due to its enormous size, it may be stored in the cloud. This paper presents the authors’ proposition for cloudcentric sensory measurements and measurements acquisition. Then, it focuses on evaluating industrial cloud storage engines for sensory functions, experimenting with three open-source types of distributed Database Management Systems (DBMS); MongoDB and PostgreSQL, with two forms of PostgreSQL schemes (Javascript Object Notation (JSON)-based and relational), against their respective horizontal scaling strategies. Several experimental cases have been performed to measure database queries’ response time, achieved throughput, and corresponding failures. Three distinct scenarios have been thoroughly tested, the most common but widely used: (i) data insertions, (ii) select/find queries, and (iii) queries related to aggregate correlation functions. The experimental results concluded that PostgreSQL with JSON achieves a 5–57% better response than MongoDB for the insert queries (cases of native, two, and four shards implementations), while, on the contrary, MongoDB achieved 56–91% higher throughput than PostgreSQL for the same set up. Furthermore, for the data insertion experimental cases of six and eight shards, MongoDB performed 13–20% more than Postgres in response time, achieving × 2 times higher throughput. Relational PostgreSQL was × 2 times faster than MongoDB in its standalone implementation for selection queries. At the same time, MongoDB achieved 19–31% faster responses and 44–63% higher throughput than PostgreSQL in the four tested sharding subcases (two, four, six, eight shards), accordingly. Finally, the relational PostgreSQL outperformed MongoDB and PostgreSQL JSON significantly in all correlation function experiments, with performance improvements from MongoDB, closing the gap with PostgreSQL towards minimizing response time to 26% and 3% for six and eight shards, respectively, and achieving significant gains towards average achieved throughput.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technical Support System for High Concurrent Power Trading Platforms Based on Microservice Load Balancing;Processes;2024-06-20

2. Real-time Container Orchestration Based on Time-utility Functions;2024 IEEE 20th International Conference on Factory Communication Systems (WFCS);2024-04-17

3. Review of Industry 4.0 from the Perspective of Automation and Supervision Systems: Definitions, Architectures and Recent Trends;Electronics;2024-02-16

4. Hierarchical Resource Orchestration Framework for Real-time Containers;ACM Transactions on Embedded Computing Systems;2024-01-10

5. Performance Analysis of Distributed Database System in Cloud Computing Environment;2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED);2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3