Thermodynamic Analysis of Steam Cooling Process in Marine Power Plant by Using Desuperheater

Author:

Mrzljak Vedran1ORCID,Senčić Tomislav1ORCID,Poljak Igor2,Medica-Viola Vedran1

Affiliation:

1. Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

2. Department of Maritime Sciences, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia

Abstract

Thermodynamic (energy and exergy) analysis of steam cooling process in the marine steam propulsion plant is presented in this research. Steam cooling is performed by using Desuperheater which inject water in the superheated steam to obtain wet steam. Wet steam is used in auxiliary heaters for various heating purposes inside the marine steam propulsion system. Auxiliary heaters require wet steam due to safety reasons and for easier steam condensation after heat transfer. Analysis of steam cooling process is performed for a variety of steam system loads. Mass flow rates of cooling water and superheated steam in a properly balanced cooling process should have the same trends at different system loads - deviations from this conclusion is expected only for a notable change in any fluid temperature. Reduction in steam temperature is dependable on the superheated steam temperature (at Desuperheater inlet) because the temperature of wet steam (at Desuperheater outlet) is intended to be almost constant at all steam system loads. Energy losses of steam cooling process for all observed system loads are low and in range between 10–30 kW, while exergy losses are lower in comparison to energy losses (between 5–15 kW) for all loads except three the highest ones. At the highest system loads exergy losses strongly increase and are higher than 20 kW (up to 40 kW). The energy efficiency of a steam cooling process is very high (around 99% or higher), while exergy efficiency is slightly lower than energy efficiency (around 98% or higher) for all loads except the highest ones. At the highest steam system loads, due to a notable increase in cooling water mass flow rate and high temperature reduction, steam cooling process exergy efficiency significantly decreases, but still remains acceptably high (between 95% and 97%). Observation of both energy and exergy losses and efficiencies leads to conclusion that exergy analysis consider notable increase in mass flow rate of cooling water which thermodynamic properties (especially specific exergies) strongly differs in comparison to steam. Such element cannot be seen in the energy analysis of the same system.

Publisher

Association for Promotion and Development of Maritime Industries

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3