Abstract
Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k-means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr0.2Ti0.8O3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Å was also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample.
Funder
U.S. Department of Energy, Office of Science
DIM OXYMORE
RENATECH
University of California, Davis
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献