X-ray nano-imaging of defects in thin film catalysts via cluster analysis

Author:

Luo Aileen1ORCID,Gorobtsov Oleg Yu.1,Nelson Jocienne N.2ORCID,Kuo Ding-Yuan1,Zhou Tao3,Shao Ziming1,Bouck Ryan1,Cherukara Mathew J.3ORCID,Holt Martin V.3,Shen Kyle M.45ORCID,Schlom Darrell G.156ORCID,Suntivich Jin1ORCID,Singer Andrej1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

2. Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA

3. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA

4. Department of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

5. Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

6. Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany

Abstract

Functional properties of transition-metal oxides strongly depend on crystallographic defects; crystallographic lattice deviations can affect ionic diffusion and adsorbate binding energies. Scanning x-ray nanodiffraction enables imaging of local structural distortions across an extended spatial region of thin samples. Yet, localized lattice distortions remain challenging to detect and localize using nanodiffraction, due to their weak diffuse scattering. Here, we apply an unsupervised machine learning clustering algorithm to isolate the low-intensity diffuse scattering in as-grown and alkaline-treated thin epitaxially strained SrIrO3 films. We pinpoint the defect locations, find additional strain variation in the morphology of electrochemically cycled SrIrO3, and interpret the defect type by analyzing the diffraction profile through clustering. Our findings demonstrate the use of a machine learning clustering algorithm for identifying and characterizing hard-to-find crystallographic defects in thin films of electrocatalysts and highlight the potential to study electrochemical reactions at defect sites in operando experiments.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3