Spontaneous Supercrystal Formation During a Strain‐Engineered Metal–Insulator Transition

Author:

Gorobtsov Oleg Yu.1ORCID,Miao Ludi2,Shao Ziming1,Tan Yueze3,Schnitzer Noah1,Goodge Berit Hansen456,Ruf Jacob1,Weinstock Daniel1,Cherukara Mathew78,Holt Martin Victor7,Nair Hari1,Chen Long‐Qing3,Kourkoutis Lena Fitting45,Schlom Darrell G.159,Shen Kyle M.25,Singer Andrej1ORCID

Affiliation:

1. Department of Materials Science and Engineering Cornell University Ithaca NY 14853 USA

2. Department of Physics Cornell University Ithaca NY 14853 USA

3. Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA

4. School of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA

5. Kavli Institute at Cornell for Nanoscale Science Cornell University Ithaca NY 14853 USA

6. Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany

7. Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA

8. Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA

9. Leibniz‐Institut für Kristallzüchtung Max‐Born‐Straße 2 12489 Berlin Germany

Abstract

AbstractMott metal–insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next‐generation energy‐efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in‐situ during a Mott transition in a Ca2RuO4 thin film. Machine learning‐assisted X‐ray nanodiffraction together with cryogenic electron microscopy reveal multi‐scale periodic domain formation at and below the film transition temperature (TFilm ≈ 200–250 K) and a separate anisotropic spatial structure at and above TFilm. Local resistivity measurements imply an intrinsic coupling of the supercrystal orientation to the material's anisotropic conductivity. These findings add a new degree of complexity to the physical understanding of Mott transitions, opening opportunities for designing materials with tunable electronic properties.

Funder

Basic Energy Sciences

Gordon and Betty Moore Foundation

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3