Author:
Meduňa Mojmír,Caha Ondřej,Choumas Emanuil,Bressan Franco,von Känel Hans
Abstract
This work investigates layers of densely spaced SiGe microcrystals epitaxially formed on patterned Si and grown up to extreme heights of 40 and 100 µm using the rocking curve imaging technique with standard laboratory equipment and a 2D X-ray pixel detector. As the crystalline tilt varied both within the epitaxial SiGe layers and inside the individual microcrystals, it was possible to obtain real-space 2D maps of the local lattice bending and distortion across the complete SiGe surface. These X-ray maps, showing the variation of crystalline quality along the sample surface, were compared with optical and scanning electron microscopy images. Knowing the distribution of the X-ray diffraction peak intensity, peak position and peak width immediately yields the crystal lattice bending locally present in the samples as a result of the thermal processes arising during the growth. The results found here by a macroscopic-scale imaging technique reveal that the array of large microcrystals, which tend to fuse at a certain height, forms domains limited by cracks during cooling after the growth. The domains are characterized by uniform lattice bending and their boundaries are observed as higher distortion of the crystal structure. The effect of concave thermal lattice bending inside the microcrystal array is in excellent agreement with the results previously presented on a microscopic scale using scanning nanodiffraction.
Funder
Ministerstvo kolství, MládeŽe a Tělovýchovy
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献