Author:
Robach Odile,Micha Jean-Sébastien,Ulrich Olivier,Gergaud Patrice
Abstract
In sample-scanning Laue microdiffraction, the local crystal orientation and local deviatoric strain tensor are obtained by illuminating the polycrystalline sample with a broadband `white' (5–30 keV) X-ray microbeam and analyzing the spot positions in the resulting local Laue pattern. Mapping local hydrostatic strain is usually slower, owing to the need to alternate between white and tunable-energy monochromatic microbeams. A technique has been developed to measure hydrostatic strain while keeping the white beam. The energy of one of the Laue spots of the grain of interest is measured using an energy-dispersive point detector, while simultaneously recording the Laue pattern on the two-dimensional detector. The experimental spot energy,Eexp, is therefore measured at the same time asEtheor, the theoretical spot energy for zero hydrostatic strain, which is derived from the analysis of the Laue pattern. The performance of the technique was compared with that of the monochromatic beam technique in two test cases: a Ge single crystal and a micrometre-sized UO2grain in a polycrystal. Accuracies on the hydrostatic strain Δa/aof ±0.4 × 10−4and ±1.3 × 10−4were obtained for Ge and UO2, respectively. Measurement strategies to limit the remaining uncertainties onEtheorare discussed.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献