Binding of hydroxycitrate to human ATP-citrate lyase

Author:

Hu Jinhong,Komakula Aruna,Fraser Marie E.

Abstract

Hydroxycitrate from the fruit ofGarcinia cambogia[i.e.(2S,3S)-2-hydroxycitrate] is the best-known inhibitor of ATP-citrate lyase. Well diffracting crystals showing how the inhibitor binds to human ATP-citrate lyase were grown by modifying the protein. The protein was modified by introducing cleavage sites forTobacco etch virusprotease on either side of a disordered linker. The protein crystallized consisted of residues 2–425-ENLYFQ and S-488–810 of human ATP-citrate lyase. (2S,3S)-2-Hydroxycitrate binds in the same orientation as citrate, but the citrate-binding domain (residues 248–421) adopts a different orientation with respect to the rest of the protein (residues 4–247, 490–746 and 748–809) from that previously seen. For the first time, electron density was evident for the loop that contains His760, which is phosphorylated as part of the catalytic mechanism. The pro-Scarboxylate of (2S,3S)-2-hydroxycitrate is available to accept a phosphoryl group from His760. However, when co-crystals were grown with ATP and magnesium ions as well as either the inhibitor or citrate, Mg2+-ADP was bound and His760 was phosphorylated. The phosphoryl group was not transferred to the organic acid. This led to the interpretation that the active site is trapped in an open conformation. The strategy of designing cleavage sites to remove disordered residues could be useful in determining the crystal structures of other proteins.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Catalytic mechanism study of ATP-citrate lyase during citryl-CoA synthesis process;iScience;2024-09

2. ACLY alternative splicing correlates with cancer phenotypes;Journal of Biological Chemistry;2024-07

3. ATP-Citrate Lyase (ACLY): An Extensive Investigation from Molecular Insight to Therapeutic implications;Natural Resources for Human Health;2024-06-05

4. Allosteric role of the citrate synthase homology domain of ATP citrate lyase;Nature Communications;2023-04-19

5. Industrial Processing of Commercially Significant Enzymes;Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering);2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3