Accounting for unknown systematic errors in Rietveld refinements: a Bayesian statistics approach

Author:

Gagin Anton,Levin Igor

Abstract

A method has been developed to address the effects of systematic errors in Rietveld refinements using powder diffraction data. Relevant errors were categorized into multiplicative, additive and peak-shape types. Corrections for these errors were incorporated into structural refinements using a Bayesian statistics approach, with the corrections themselves treated as nuisance parameters and marginalized out of the analysis. Structural parameters refined using the proposed method represent probability-weighted averages over all possible error corrections. The developed formalism has been adapted to least-squares minimization algorithms and implemented as an extension to the Rietveld software packageGSAS-II. The technique was first tested using neutron and X-ray diffraction data simulated for PbSO4and then applied to the equivalent experimental data sets for the same compound. The results obtained using the simulated data confirmed that the proposed method yields significantly more accurate estimates of structural parameters and their uncertainties than standard refinements. The benefits were particularly significant for joint refinements using neutron and X-ray diffraction data because accounting for systematic errors enabled more adequate weighting of the individual data sets.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3