MILK: a Python scripting interface to MAUD for automation of Rietveld analysis

Author:

Savage Daniel J.,Lutterotti Luca,Biwer Christopher M.,McKerns Michael,Bolme Cynthia,Knezevic Marko,Vogel Sven C.ORCID

Abstract

Modern diffraction experiments (e.g. in situ parametric studies) present scientists with many diffraction patterns to analyze. Interactive analyses via graphical user interfaces tend to slow down obtaining quantitative results such as lattice parameters and phase fractions. Furthermore, Rietveld refinement strategies (i.e. the parameter turn-on-off sequences) tend to be instrument specific or even specific to a given dataset, such that selection of strategies can become a bottleneck for efficient data analysis. Managing multi-histogram datasets such as from multi-bank neutron diffractometers or caked 2D synchrotron data presents additional challenges due to the large number of histogram-specific parameters. To overcome these challenges in the Rietveld software Material Analysis Using Diffraction (MAUD), the MAUD Interface Language Kit (MILK) is developed along with an updated text batch interface for MAUD. The open-source software MILK is computer-platform independent and is packaged as a Python library that interfaces with MAUD. Using MILK, model selection (e.g. various texture or peak-broadening models), Rietveld parameter manipulation and distributed parallel batch computing can be performed through a high-level Python interface. A high-level interface enables analysis workflows to be easily programmed, shared and applied to large datasets, and external tools to be integrated with MAUD. Through modification to the MAUD batch interface, plot and data exports have been improved. The resulting hierarchical folders from Rietveld refinements with MILK are compatible with Cinema: Debye–Scherrer, a tool for visualizing and inspecting the results of multi-parameter analyses of large quantities of diffraction data. In this manuscript, the combined Python scripting and visualization capability of MILK is demonstrated with a quantitative texture and phase analysis of data collected at the HIPPO neutron diffractometer.

Funder

U.S. Department of Energy

University of New Hampshire

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference50 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J. & Devin, M. (2016). arXiv:1603.04467.

2. Ahrens, J., Jourdain, S., O'Leary, P., Patchett, J., Rogers, D. H. & Petersen, M. (2014). Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC14), pp. 424-434. IEEE Press.

3. Development of an Automatic, High-Throughput Structural Refinement Method Using Rietveld Analysis

4. The fast azimuthal integration Python library:pyFAI

5. PolySNAP3: a computer program for analysing and visualizing high-throughput data from diffraction and spectroscopic sources

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3