Investigation of precision, accuracy and confidence of X-ray diffraction for determining crystallite size in nanopowders

Author:

Moore Alexander P.,Nemer Martin B.,Rodriguez Mark A.,Roberts Christine C.,Fleig Patrick F.,Papenguth Hans W.

Abstract

X-ray diffraction (XRD) is often utilized as a method of determining bulk sample crystallite size in powder characterization. While it is generally accepted that XRD peak broadening allows for qualitative crystallite size comparisons, its use for quantitative information is still debated. This study investigates the quantitative capability of XRD for determining the crystallite sizes of magnesium oxide nanocrystals by examining the precision, accuracy and uncertainty using the whole pattern (WP) weighted least-squares and Williamson–Hall (WH) methods. The precision of the methods was investigated by re-preparing, re-running and re-analysing identical samples. Both methods were found to be precise within 2 nm. The accuracy of the methods was investigated by comparing them against independent crystallite size analyses using visual particle identification from scanning electron microscopy micrographs and from indirect calculations using Brunauer–Emmett–Teller (BET) adsorption-determined surface areas. The WP method was found to be more accurate than the WH method, which consistently underpredicted the crystallite size. Finally, the confidence of the methods was investigated using a Bayesian inference statistical inversion method. The WP method was found to have a narrower confidence distribution in its crystallite size determination than the WH method. The broad WH confidence indicates that reliable quantitative single-measurement crystallite size determinations are not feasible using the WH technique. However, the WP method demonstrated precision, accuracy and confidence, allowing quantitative crystallite size determinations to be made.

Funder

U.S. Department of Energy

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference52 articles.

1. Dissolution of comminuted magnesium oxide as affected by the density of dislocations introduced by various comminution methods

2. Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method

3. Maximum-likelihood methods in powder diffraction refinements

4. Balzar, D. (1999). Defect and Microstructure Analysis by Diffraction, IUCr Monographs on Crystallography, Vol. 10, edited by R. Snyder, J. Fiala & H. J. Bunge, pp. 94-126. Chester, Oxford: IUCr/Oxford University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3