The role of calcium dynamics with amyloid beta on neuron-astrocyte coupling

Author:

JETHANANDANİ Hemlata1ORCID,JHA Brajesh Kumar2ORCID,UBALE Manisha1ORCID

Affiliation:

1. Department of Science & Humanities, Indus Institute of Science Humanities & Liberal Studies (IISHLS), Indus University Rancharda, Ahmedabad-382115 Gujarat

2. Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat

Abstract

Amyloid beta ($A\beta$) plaques are associated with neurodegenerative diseases such as Alzheimer's disease. Due to the involvement of $A\beta$ plaques in the functioning of the brain; cognitive decline disrupts calcium homeostasis in nerve cells and causes abnormal calcium ions ($Ca^{2+}$) signaling patterns. In consequence, there is enhanced neuronal excitability, compromised synaptic transmission, and decreased astrocytic function. Neuron-astrocyte coupling through calcium dynamics with different neuronal functions has been studied. Key signaling molecules in this process include $Ca^{2+}$, which control several cellular functions, including neurotransmission and astrocytic regulation. The mathematical model for neuron-astrocyte communication has been developed to study the importance of calcium dynamics in signal transduction between the cells. To understand the wide role of mitochondria, NCX, and amyloid beta with various necessary parameters included in the model, $Ca^{2+}$ signaling patterns have been analyzed through amplitude modulation and frequency modulation. The results of the current model are simulated and analyzed using XPPAUT. The findings of the current study are contrasted with experimental data from an existing mathematical model that illustrates the impact of calcium oscillation frequency and amplitude modulations in nerve cells.

Funder

Pandit Deendayal Energy University, India

Publisher

Mathematical Modelling and Numerical Simulation with Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3