Mathematical modeling of interactions between colon cancer and immune system with a deep learning algorithm

Author:

Raeisi Elham,Yavuz MehmetORCID,Khosravifarsani Mohammadreza,Fadaei Yasin

Abstract

AbstractColon cancer is a complex disease with genetically unstable cell lines. In order to better understand the complexity of colon cancer cells and their metastatic mechanisms, we develop a mathematical model in this study. The model is based on a system of fractional-order differential equations and Fractional-Cancer-Informed Neural Networks (FCINN). The model captures a dynamic network of interactions between dendritic cells (DCs), cytotoxic T-cells (CD$$8^+$$ 8 + ), helper T-cells (CD$$4^+$$ 4 + ), and colon cancer cells through fractional differential equations. By varying the fractional order between 0 and 1, we can classify patients into different groups based on their immune patterns. The goal of this paper is to identify different immune patterns and cancer cell behaviors, as well as the parameters that play an important role in metastasis, control, or elimination of cancer cells in the model. However, several parameters in the model are difficult to estimate in a patient-specific manner. To address this challenge, we use FCINN as an effective deep-learning tool for parameter estimation and numerical simulation of the model. Our findings suggest that the most effective factors in controlling the progression and preventing metastasis of colon cancer are the initial number of cancer cells, the inhibiting rates of tumor cells by DCs, the source of DCs, and the activation of helper T-cells by DCs. These findings suggest that DCs can be used as an immunotherapy tool for the control and treatment of colon cancer.

Funder

Necmettin Erbakan University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3