Stability Analysis of Regular and Chaotic Ca2+ Oscillations in Astrocytes

Author:

Ye Min1,Zuo Hongkun2ORCID

Affiliation:

1. School of Education Science, Guangxi University for Nationalities, Nanning 530006, Guangxi, China

2. School of Finance and Mathematics, Huainan Normal University, Huainan 232038, Anhui, China

Abstract

Ca2+ oscillations play an important role in various cell types. Thus, understanding the dynamical mechanisms underlying astrocytic Ca2+ oscillations is of great importance. The main purpose of this article was to investigate dynamical behaviors and bifurcation mechanisms associated with astrocytic Ca2+ oscillations, including stability of equilibrium and classification of different dynamical activities including regular and chaotic Ca2+ oscillations. Computation results show that part of the reason for the appearance and disappearance of spontaneous astrocytic Ca2+ oscillations is that they embody the subcritical Hopf and the supercritical Hopf bifurcation points. In more details, we theoretically analyze the stability of the equilibrium points and illustrate the regular and chaotic spontaneous calcium firing activities in the astrocytes model, which are qualitatively similar to actual biological experiment. Then, we investigate the effectiveness and the accuracy of our nonlinear dynamical mechanism analysis via computer simulations. These results suggest the important role of spontaneous Ca2+ oscillations in conjunction with the adjacent neuronal input that may help correlate the connection of both the glia and neuron.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3