Abstract
AbstractEarth’s aquatic food webs are overwhelmingly supported by planktonic microalgae that live in the sunlit water column where only a minimum number of physical niches are readily identifiable. Despite this paucity of environmental differentiation, these “phytoplankton” populations exhibit a rich biodiversity, an observation not easily reconciled with broadly accepted rules of resource-based competitive exclusion. This conundrum is referred to as the “Paradox of the Plankton”. Consideration of physical distancing between nutrient depletion zones around individual phytoplankton, however, suggests a competition-neutral resource landscape. Application of neutral theory to the sheer number of phytoplankton in physically-mixed water masses yields a prediction of astronomical biodiversity, suggesting the inverted paradox: Why are there so few phytoplankton species? Here, we introduce a trophic constraint on phytoplankton that, when combined with stochastic principals of ecological drift, predicts only modest levels of diversity in an otherwise competition-neutral landscape. Our “trophic exclusion” principle predicts diversity to be independent of population size and yields a species richness across cell-size classes that is consistent with broad oceanographic survey observations.
Funder
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献