Relationships Between Plankton Size Spectra, Net Primary Production, and the Biological Carbon Pump

Author:

Stukel Michael R.12ORCID,Décima Moira3,Kelly Thomas B.1ORCID,Landry Michael R.3,Nodder Scott D.4,Ohman Mark D.3ORCID,Selph Karen E.5ORCID,Yingling Natalia1

Affiliation:

1. Department of Earth, Ocean, and Atmospheric Science Florida State University Tallahassee FL USA

2. Center for Ocean‐Atmospheric Prediction Studies Florida State University Tallahassee FL USA

3. Scripps Institution of Oceanography University of California San Diego La Jolla SA USA

4. National Institute of Water and Atmospheric Research (NIWA) Wellington New Zealand

5. Department of Oceanography University of Hawaii at Manoa Honolulu HI USA

Abstract

AbstractPhotosynthesis in the surface ocean and subsequent export of a fraction of this fixed carbon leads to carbon dioxide sequestration in the deep ocean. Ecological relationships among plankton functional groups and theoretical relationships between particle size and sinking rate suggest that carbon export from the euphotic zone is more efficient when communities are dominated by large organisms. However, this hypothesis has never been tested against measured size spectra spanning the >5 orders of magnitude found in plankton communities. Using data from five ocean regions (California Current Ecosystem, North Pacific subtropical gyre, Costa Rica Dome, Gulf of Mexico, and Southern Ocean subtropical front), we quantified carbon‐based plankton size spectra from heterotrophic bacteria to metazoan zooplankton (size class cutoffs varied slightly between regions) and their relationship to net primary production and sinking particle flux. Slopes of the normalized biomass size spectra (NBSS) varied from −1.6 to −1.2 (median slope of −1.4 equates to large 1–10 mm organisms having a biomass equal to only 7.6% of the biomass in small 1–10 μm organisms). Net primary production was positively correlated with the NBSS slope, with a particularly strong relationship in the microbial portion of the size spectra. While organic carbon export co‐varied with NBSS slope, we found only weak evidence that export efficiency is related to plankton community size spectra. Multi‐variate statistical analysis suggested that properties of the NBSS added no explanatory power over chlorophyll, primary production, and temperature. Rather, the results suggest that both plankton size spectra and carbon export increase with increasing system productivity.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3