Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms

Author:

Ruvindy Rendy1,Barua Abanti1,Bolch Christopher J S2,Sarowar Chowdhury3,Savela Henna14ORCID,Murray Shauna A1ORCID

Affiliation:

1. University of Technology Sydney, School of Life Sciences , Sydney, PO Box 123, Broadway, NSW 2007, Australia

2. Institute for Marine & Antarctic Studies, University of Tasmania , Launceston 7248 TAS, Australia

3. Sydney Institute of Marine Science , Chowder Bay Rd, Mosman, NSW, Australia

4. Finnish Environment Institute, Marine Research Centre , Helsinki, Finland

Abstract

Abstract The application of meta-barcoding, qPCR, and metagenomics to aquatic eukaryotic microbial communities requires knowledge of genomic copy number variability (CNV). CNV may be particularly relevant to functional genes, impacting dosage and expression, yet little is known of the scale and role of CNV in microbial eukaryotes. Here, we quantify CNV of rRNA and a gene involved in Paralytic Shellfish Toxin (PST) synthesis (sxtA4), in 51 strains of 4 Alexandrium (Dinophyceae) species. Genomes varied up to threefold within species and ~7-fold amongst species, with the largest (A. pacificum, 130 ± 1.3 pg cell−1 /~127 Gbp) in the largest size category of any eukaryote. Genomic copy numbers (GCN) of rRNA varied by 6 orders of magnitude amongst Alexandrium (102– 108 copies cell−1) and were significantly related to genome size. Within the population CNV of rRNA was 2 orders of magnitude (105 – 107 cell−1) in 15 isolates from one population, demonstrating that quantitative data based on rRNA genes needs considerable caution in interpretation, even if validated against locally isolated strains. Despite up to 30 years in laboratory culture, rRNA CNV and genome size variability were not correlated with time in culture. Cell volume was only weakly associated with rRNA GCN (20–22% variance explained across dinoflagellates, 4% in Gonyaulacales). GCN of sxtA4 varied from 0–102 copies cell−1, was significantly related to PSTs (ng cell−1), displaying a gene dosage effect modulating PST production. Our data indicate that in dinoflagellates, a major marine eukaryotic group, low-copy functional genes are more reliable and informative targets for quantification of ecological processes than unstable rRNA genes.

Funder

Department of Education and Training | Australian Research Council

University of Technology Sydney

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3