Affiliation:
1. Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
Abstract
The sensitivity of gradient echo magnetic resonance imaging (MRI) to changes in cerebral blood oxygenation (CBO) has been introduced for mapping functional brain activation. Here, we report that this approach allows monitoring autoregulation in the human brain under vasodilatory stress. Following the administration of acetazolamide, signal intensities of deoxyhemoglobin-sensitive images increased in cortical and subcortical gray matter and to a lesser extent in white matter. This result reflects a venous hyperoxygenation stemming from an increase in cerebral perfusion with oxygen consumption remaining constant. In addition, pharmacologic induction of vasodilation attenuated activity-related MRI signal changes in the visual cortex under photic stimulation. Although intersubject variability was high, this finding indicates individually persisting autoregulatory responsiveness to functional challenge despite an “exhausted” reserve capacity. It is suggested that recording CBO by MRI will foster our understanding of modulation of vasomotor tone and cerebral perfusion. Furthermore, this technique may prove valuable for assessing the cerebrovascular reserve capacity in patients with carotid artery occlusive disease.
Subject
Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献