Effects of acetazolamide on cerebrocortical NADH and blood volume

Author:

Bickler P. E.,Litt L.,Severinghaus J. W.

Abstract

Acetazolamide (AZ), a potent carbonic anhydrase inhibitor in human and animal tissues, increases cerebral blood flow (CBF) by acidifying cerebral extracellular fluids. To demonstrate the relationship of increased CBF to brain O2 availability after AZ administration, a compensated fluorometer was used to study changes in the cerebrocortical redox balance in rabbits. Seven rabbits were anesthetized with pentobarbital sodium. Excitation light (366 nm) was conducted to the cerebrocortical surface of each animal by a 4-mm-diam fiberoptic light guide. Fluorescence emissions from cerebrocortical NADH (450 nm) were compared at different inspired O2 (FIO2) tensions. Reflected light (366 nm), which was used to determine a correction to the fluorescence signal, was separately quantitated and interpreted as an index of cerebrocortical blood volume. Reductions in FIO2 from 1.0 to 0.21, 0.14, 0.10, and 0.07 resulted in increases in both tissue blood volume and [NADH]. Intravenous AZ (25 mg/kg) increased cerebrocortical blood volume and reduced the [NADH], even during ventilation with 100% O2. The changes in brain redox balance caused by vasodilation with AZ were compared with those caused by vasodilatation with CO2. The NAD+/NADH redox state was a continuous function of FIO2 at all levels of arterial PCO2 (PaCO2), both before and after AZ administration. The improvement in cerebral O2 delivery caused by AZ-induced vasodilation was comparable to that caused by the vasodilatation that results from a PaCO2 elevation approximately equal to 12-15 Torr above normal. The slope of the relationship between [NADH] and FIO2 was similar at normal, low, and high levels of PaCO2. We conclude that AZ administration and PaCO2 elevation improve cerebral oxygenation by similar mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effects of Acetazolamide on Cerebral Hemodynamics in Adult Patients with an Acute Brain Injury: A Systematic Review;Brain Sciences;2023-12-06

2. Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain;Journal of Applied Physiology;2015-12-15

3. Monitoring of Various Organs in Different Animal Models;Mitochondrial Function In Vivo Evaluated by NADH Fluorescence;2015

4. Responses of NADH to Physiological and Pathophysiological Conditions;Mitochondrial Function In Vivo Evaluated by NADH Fluorescence;2015

5. Technological Aspects of NADH Monitoring;Mitochondrial Function In Vivo Evaluated by NADH Fluorescence;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3