Robust data-driven segmentation of pulsatile cerebral vessels using functional magnetic resonance imaging

Author:

Wright Adam M.ORCID,Xu Tianyin,Ingram Jacob,Koo John,Zhao Yi,Tong Yunjie,Wen QiutingORCID

Abstract

AbstractFunctional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information that can offer insights into neurofluid dynamics, vascular health, and waste clearance function. The availability of cerebral vessel segmentation could facilitate fluid dynamics research in fMRI. However, without magnetic resonance angiography scans, cerebral vessel segmentation is challenging and time-consuming. This study leverages cardiac-induced pulsatile fMRI signal to develop a data-driven, automatic segmentation of large cerebral arteries and the superior sagittal sinus (SSS). The method was validated in a local dataset by comparing it to ground truth cerebral artery and SSS segmentations. Using the Human Connectome Project (HCP) aging dataset, the method’s reproducibility was tested on 422 participants aged 36 to 100 years, each with four repeated fMRI scans. The method demonstrated high reproducibility, with an intraclass correlation coefficient > 0.7 in both cerebral artery and SSS segmentation volumes. This study demonstrates that the large cerebral arteries and SSS can be reproducibly and automatically segmented in fMRI datasets, facilitating the investigation of fluid dynamics in these regions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3