Stimulus Parameters Influence Characteristics of Optical Intrinsic Signal Responses in Somatosensory Cortex

Author:

Blood Anne J.1,Narayan Sanjiv M.1,Toga Arthur W.1

Affiliation:

1. Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, California, U.S.A.

Abstract

Optical imaging of intrinsic signals was performed in the barrel cortex of the rat during whisker deflections of varying frequencies (1 to 20 Hz) and durations (0.1 to 5 s). A dose–response relationship was shown between these stimuli and the characteristics of the optically recorded intrinsic signal response. At constant frequencies, longer stimulus durations increased response magnitude, as defined by mean pixel value in statistically determined regions of interest. At constant durations, higher stimulus frequencies increased response magnitude. Response magnitude was also increased by greater numbers of deflections. When stimulus number was constant, there were no differences in response magnitude, regardless of stimulus frequency and duration. Spatial extent of responses, as defined by number of pixels in regions of interest, did not differ between stimulus frequencies, durations, or numbers. Comparison of the time to reach peak intrinsic signal response after stimulus onset (“time-to-peak”) suggested that higher frequencies were associated with faster time-to-peak. Registration of intrinsic signal responses with cytochrome oxidase-stained whisker barrels demonstrated that responses were located over the barrel corresponding to the stimulated whisker. In summary, we have shown that the absolute number of stimuli delivered to the system is, at least for short stimulus periods (≤5 s), a determining factor for the magnitude of these responses, whereas stimulus frequency appears to influence time-to-peak response.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3