Flow of excitation within rat barrel cortex on striking a single vibrissa

Author:

Armstrong-James M.1,Fox K.1,Das-Gupta A.1

Affiliation:

1. Department of Physiology, Queen Mary and Westfield College, LondonUniversity, United Kingdom.

Abstract

1. Extracellular spike recordings were made from single cells in various layers of barrel cortex in adult rats anesthetized with urethan. Response magnitude and latency differences to brief 1.14 degrees deflections of mystacial vibrissae of center (principal) and surround receptive-field vibrissae were measured. Latency differences for pairs of cells in the same penetration to stimulation of the principal vibrissa were also collected. In separate experiments the domains of layer IV cells were mapped for their influence by a single vibrissa and their latencies to this vibrissa were recorded. In all experiments precise locations of layer IV cells in each penetration were identified using dye-lesioning and cytochrome oxidase staining of tangential sections. 2. The results suggest that principal vibrissa data are relayed radially in a column of neurons before parallel relay to adjacent columns. To the principal vibrissa, layers IV and Vb neurons discharged earliest, with layers II and III on average 2 and 3 ms later, respectively. Serial relay from layers IV to III to II was suggested to be the most common event. Although layer Va cells fired next, a single-column organization is not suggested for them because differences in latency or response magnitude to their principal and immediate surround vibrissae were not significant. Layer II, III and IV cells showed no statistical difference in latency to the nearest surround vibrissa but fired significantly later than to their principal input. 3. Because, from our previous studies, surround receptive fields of barrel cells in rat S1 cortex appear to be constructed intracortically, these data suggest a parallel column-column relay for their construction. Horizontal relay between barrels occurred first within the septae between barrels. Mean intracortical transmission velocities were calculated at approximately 0.05 m/s for column-column information transfer.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 363 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3