Regional Kinetic Constants and Cerebral Metabolic Rate for Glucose in Normal Human Volunteers Determined by Dynamic Positron Emission Tomography of [18F]-2-Fluoro-2-Deoxy-D-Glucose

Author:

Heiss W.-D.1,Pawlik G.1,Herholz K.1,Wagner R.1,Göldner H.1,Wienhard K.1

Affiliation:

1. Max-Planck-Institut für Neurologische Forschung, Köln, F.R.G.

Abstract

Using dynamic [18F]fluorodeoxyglucose (FDG) positron emission tomography with a high-resolution, seven-slice positron camera, the kinetic constants of the original three-compartment model of Sokoloff and co-workers (1977) were determined in 43 distinct topographic brain regions of seven healthy male volunteers aged 28–38 years. Regional averages of the cerebral metabolic rate for glucose (CMRglu) were calculated both from individually fitted rate constants (CMRglukinetic) and from activity maps recorded 30–40 min after FDG injection, employing a four-parameter operational equation with standard rate constants from the literature (CMRgluautoradiographic). Metabolic rates and kinetic constants varied significantly among regions and subjects, but not between hemispheres. k1 ranged between 0.0485 ± 0.00778 min−1 in the oval center and 0.0990 ± 0.01347 min−1 in the primary visual cortex. k2 ranged from 0.1198 ± 0.01533 min−1 in the temporal white matter to 0.1472 ± 0.01817 min−1 in the cerebellar dentate nucleus. k3 was lowest (0.0386 ± 0.01482 min−1) in temporal white matter and highest (0.0823 ± 0.02552 min−1) in the caudate nucleus. Maximum likelihood cluster analysis revealed four homogeneous groups of brain regions according to their respective kinetic constants: (1) white matter and mixed brainstem structures; (2) cerebellar gray matter and hippocampal formations; (3) basal ganglia and frontolateral and primary visual cortex; and (4) other cerebral cortex and thalamus. Across the entire brain, k1 and k2 were positively correlated (r = 0.79); k1 and k3 showed some correlation (r = 0.59); but no significant linear association was found between k2 and k3. A strong correlation with CMRglu could be demonstrated for k1 (r = 0.88) and k3 (r = 0.90), but k2 was loosely correlated (r = 0.56). CMRglu kinetic ranged from 17.0 ± 2.45 μmol/100 g/min in the occipital white matter to 41.1 ± 5.62 μmol/100 g/min in the frontolateral cortex. In most regions the mean values of CMRglu kinetic did not differ significantly from CMRglu autoradiographic. With few exceptions, however, within-region variance was significantly less for CMRglu kinetic than for CMRglu autoradiographic, suggesting greater individual reliability of results obtained by the kinetic approach.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3