A new framework for metabolic connectivity mapping using bolus [18F]FDG PET and kinetic modeling

Author:

Volpi Tommaso12ORCID,Vallini Giulia3,Silvestri Erica3,Francisci Mattia De3,Durbin Tony4,Corbetta Maurizio25,Lee John J4ORCID,Vlassenko Andrei G4,Goyal Manu S4ORCID,Bertoldo Alessandra23

Affiliation:

1. Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA

2. Padova Neuroscience Center, University of Padova, Padova, Italy

3. Department of Information Engineering, University of Padova, Padova, Italy

4. Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA

5. Department of Neuroscience, University of Padova, Padova, Italy

Abstract

Metabolic connectivity (MC) has been previously proposed as the covariation of static [18F]FDG PET images across participants, i.e., across-individual MC (ai-MC). In few cases, MC has been inferred from dynamic [18F]FDG signals, i.e., within-individual MC (wi-MC), as for resting-state fMRI functional connectivity (FC). The validity and interpretability of both approaches is an important open issue. Here we reassess this topic, aiming to 1) develop a novel wi-MC methodology; 2) compare ai-MC maps from standardized uptake value ratio ( SUVR) vs. [18F]FDG kinetic parameters fully describing the tracer behavior (i.e., Ki, K1, k3); 3) assess MC interpretability in comparison to structural connectivity and FC. We developed a new approach based on Euclidean distance to calculate wi-MC from PET time-activity curves. The across-individual correlation of SUVR, Ki, K1, k3 produced different networks depending on the chosen [18F]FDG parameter ( k3 MC vs. SUVR MC, r = 0.44). We found that wi-MC and ai-MC matrices are dissimilar (maximum r = 0.37), and that the match with FC is higher for wi-MC (Dice similarity: 0.47–0.63) than for ai-MC (0.24–0.39). Our analyses demonstrate that calculating individual-level MC from dynamic PET is feasible and yields interpretable matrices that bear similarity to fMRI FC measures.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3