Connecting the Dots: Approaching a Standardized Nomenclature for Molecular Connectivity Combining Data and Literature

Author:

Reed MB,Cocchi L,Knudsen GM,Sander C,Gryglewski G,Chen J,Volpi T,Fisher P,Khattar N,Silberbauer LR,Murgaš MORCID,Godbersen GMORCID,Nics LORCID,Walter M,Hacker MORCID,Hammers A,Ogden TR,Mann JJ,Biswal B,Rosen B,Carson R,Price J,Lanzenberger RORCID,Hahn AORCID

Abstract

AbstractPET-based connectivity computation is a molecular approach that complements fMRI-derived functional connectivity. However, the diversity of methodologies and terms employed in PET connectivity analysis has resulted in ambiguities and confounded interpretations, highlighting the need for a standardized nomenclature.Drawing parallels from other imaging modalities, we propose “molecular connectivity” as an umbrella term to characterize statistical dependencies between PET signals across brain regions at the individual level (within-subject). Like fMRI resting-state functional connectivity, “molecular connectivity” leverages temporal associations in the PET signal to derive brain network associations. Another within-subject approach evaluates regional similarities of tracer kinetics, which are unique in PET imaging, thus referred to as “kinetic connectivity”. On the other hand, “molecular covariance” denotes group-level computations of covariance matrices across-subject. Further specification of the terminology can be achieved by including the employed radioligand, such as “metabolic connectivity/covariance” for [18F]FDG as well as “tau/amyloid covariance” for [18F]flutemetamol / [18F]flortaucipir.To augment these distinctions, high-temporal resolution functional [18F]FDG PET scans from 17 healthy participants were analysed with common techniques of molecular connectivity and covariance, allowing for a data-driven support of the above terminology. Our findings demonstrate that temporal band-pass filtering yields structured network organization, whereas other techniques like 3rdorder polynomial fitting, spatio-temporal filtering and baseline normalization require further methodological refinement for high-temporal resolution data. Conversely, molecular covariance from across-subject data provided a simple means to estimate brain region interactions through regularized or sparse inverse covariance estimation.A standardized nomenclature in PET-based connectivity research can reduce ambiguity, enhance reproducibility, and facilitate interpretability across radiotracers and imaging modalities. Via a data-driven approach, this work provides a transparent framework for categorizing and comparing PET-derived connectivity and covariance metrics, laying the foundation for future investigations in the field.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3