Abstract
AbstractPET-based connectivity computation is a molecular approach that complements fMRI-derived functional connectivity. However, the diversity of methodologies and terms employed in PET connectivity analysis has resulted in ambiguities and confounded interpretations, highlighting the need for a standardized nomenclature.Drawing parallels from other imaging modalities, we propose “molecular connectivity” as an umbrella term to characterize statistical dependencies between PET signals across brain regions at the individual level (within-subject). Like fMRI resting-state functional connectivity, “molecular connectivity” leverages temporal associations in the PET signal to derive brain network associations. Another within-subject approach evaluates regional similarities of tracer kinetics, which are unique in PET imaging, thus referred to as “kinetic connectivity”. On the other hand, “molecular covariance” denotes group-level computations of covariance matrices across-subject. Further specification of the terminology can be achieved by including the employed radioligand, such as “metabolic connectivity/covariance” for [18F]FDG as well as “tau/amyloid covariance” for [18F]flutemetamol / [18F]flortaucipir.To augment these distinctions, high-temporal resolution functional [18F]FDG PET scans from 17 healthy participants were analysed with common techniques of molecular connectivity and covariance, allowing for a data-driven support of the above terminology. Our findings demonstrate that temporal band-pass filtering yields structured network organization, whereas other techniques like 3rdorder polynomial fitting, spatio-temporal filtering and baseline normalization require further methodological refinement for high-temporal resolution data. Conversely, molecular covariance from across-subject data provided a simple means to estimate brain region interactions through regularized or sparse inverse covariance estimation.A standardized nomenclature in PET-based connectivity research can reduce ambiguity, enhance reproducibility, and facilitate interpretability across radiotracers and imaging modalities. Via a data-driven approach, this work provides a transparent framework for categorizing and comparing PET-derived connectivity and covariance metrics, laying the foundation for future investigations in the field.
Publisher
Cold Spring Harbor Laboratory