Brain energetics and the connectionist concept in cognitive neuroscience

Author:

Arshavsky Yuri I.1ORCID

Affiliation:

1. BioCircuits Institute, University of California San Diego, La Jolla, California, United States

Abstract

One of the central paradigms of modern neuroscience is the connectionist concept suggesting that the brain’s cognitive functions are carried out at the level of neural networks through complex interactions among neurons. This concept considers neurons as simple network elements whose function is limited to generating electrical potentials and transmitting signals to other neurons. Here, I focus on the neuroenergetic aspect of cognitive functions and argue that many findings from this field challenge the concept that cognitive functions are performed exclusively at the level of neural circuits. Two of these findings are particularly foretelling. First, activation of the cerebral cortex in humans (sensory stimulation or solving cognitive problems) is not associated with a significant increase in energy demand. Second, the energetic cost of the brain per unit mass in primates, including Homo sapiens, is approximately proportional to the number of cerebral neurons but not to the number of synapses, the complexity of neural networks, or the level of brain’s intellectual abilities. These findings contradict the predictions of the connectionist concept. Rather, they suggest that cognitive functions are generated by intraneuronal mechanisms that do not require much energy. In this context, interactions among neurons would serve to coordinate activities of neurons performing elementary cognitive functions. This function of the network mechanisms also does not require much energy.

Funder

no

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3